
fnirSoft Scripting
A Quick Start Guide

www.biopac.com fNIRSoft from BIOPAC

fS 2018

2 | P a g e
H. Ayaz (v4.10)

Please refer to fnirSoft in your publications with the following:

Ayaz, H. (2010). “Functional Near Infrared Spectroscopy based

Brain Computer Interface”. PhD Thesis, Drexel University,

Philadelphia, PA.

Disclaimer

THIS SOFTWARE IS PROVIDED ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

fS 2018

3 | P a g e
H. Ayaz (v4.10)

Table of Contents
1. Introduction .. 6

1.1. Overview ... 6

2. Quick Start ... 7

2.1. Hello World! .. 7

2.2. Mathematical Expressions .. 7

2.3. Creating and Using Variables .. 8

2.3.1. Creating a Single Value – Numeric Variable .. 8

2.3.2. Creating a Vector – Numeric Variable ... 8

2.3.3. Creating an Array – Numeric Variable .. 9

2.3.4. Creating a String Variable ... 10

2.3.5. Creating a List Variable ... 10

2.4. Intellisense .. 11

2.5. Command Popup Help Documentation .. 12

2.6. Help Explorer ... 12

2.7. Editor Tool ... 12

2.7.1. Coding Pane .. 15

2.7.2. Debug Pane ... 16

2.8. Output Window .. 18

2.9. Execution Control .. 18

2.9.1. Loops ... 18

2.9.2. Nested loops ... 19

2.9.3. Conditionals .. 20

2.9.4. Warning and Error Handling ... 20

2.9.5. Debugging ... 23

2.9.6. Try/Catch/Finally ... 24

2.9.7. Current directory... 24

2.10. Functions ... 26

3. Common programming/use patterns ... 27

3.1. Loading Light Intensity data (*.nir) files .. 27

3.2. Loading Oxygenation/Hemoglobin concentration changes data (*.oxy) files 27

fS 2018

4 | P a g e
H. Ayaz (v4.10)

3.3. Loading Marker/Event data (*.mrk) files .. 28

3.4. Loading fnirSoft data (*.fsd) files .. 28

3.5. Loading multiple files simultaneously ... 29

3.6. Calculating Oxygenation from Light Intensity data ... 30

3.7. Using Find command .. 30

3.8. Calculating Averages ... 32

3.9. Saving variables to fnirSoft data (*.fsd) files... 33

3.10. Applying FIR Filter ... 34

3.11. Defining Block Times ... 36

3.12. Standardizing .. 38

3.13. Splitting Variables ... 39

3.14. Exporting variables to Matlab ... 40

3.15. Exporting variables to Text Files ... 40

4. Naming Conventions ... 42

4.1 Categories ... 42

4.2 Variable Associations .. 43

5. Indexing ... 45

5.1. Get Numeric Variable Indexing ... 45

5.2. Set Numeric Variable Indexing .. 46

5.3. List Variable Indexing .. 47

6. List of Commands .. 49

Console .. 49

DAQ ... 49

Dataspace .. 49

DateTime ... 50

Execution ... 50

Functions ... 50

Lightgraph ... 50

Math .. 51

Oxygraph ... 51

Spatial.. 51

fS 2018

5 | P a g e
H. Ayaz (v4.10)

System ... 52

Temporal ... 52

Topograph ... 54

Utility ... 54

Variable ... 55

fS 2018

6 | P a g e
H. Ayaz (v4.10)

1. Introduction
fnirSoft (fS) is a stand-alone software package designed to process, analyze and visualize functional near

infrared spectroscopy signals through both graphical user interface and/or scripting. This document

provides an introductory tutorial for fnirSoft scripting (programming).

fS script is a data-driven functional programming language for neuroimaging data and was designed to do

more with less code and be both readable by humans and computers. The idea is to write simple

procedural text to easily manage and automate data processing for scientific computing. fS Script takes

advantage of neuroimaging data structure and using intrinsic language features and commands to

eliminate repetitive and error prone elements that would be necessary to process data in other languages.

fS Script is also aimed to help repeatable research by standardizing functional neuroimaging signal

processing steps and help establishing conventions that can be replicated over time on different datasets.

1.1. Overview
Below is the main window of fnirSoft with common user elements identified. For more information,

please refer to fnirSoft User Manual (2017).

Below is the main window of fnirSoft with common user elements and tools identified.

Command prompt

Command output pane

Create a new Topograph
(Spatial visualization/registration)

Open a new

editor to

view/edit

scripts View/Process Variables

Create a new Lightgraph
(View & Process NIR files)

Open any

fnirSoft file

Open

Organizer

Tool

Command status

Create a new Oxygraph
(View & Process OXY files)

Dataspace status

Dataspace

Directory

History

Panes

fS 2018

7 | P a g e
H. Ayaz (v4.10)

fnirSoft has a scripting engine that interprets written procedural and descriptive commands at run-time.

Commands can be entered to the “command prompt” at the bottom of the window and executed by

pressing “Enter”. Algebraic expressions can be

evaluated. Overview of the syntax and step by step

tutorials will be provided in the next chapters.

Longer scripts can be composed in Editor Tool and

saved for future use. History Tools keeps track of all

executed commands through the command prompt

and can be accessed either by executing History command or through top menu View>History dialog.

2. Quick Start
Scripts are series of commands written in text. They can be executed either by typing at the command

prompt or by saving them in separate files and executing the file.

Parentheses are used to prioritize processing and identify parameters for a command.

Space is the basic separator between functions, names, numbers and everything…

2.1. Hello World!
Here’s your first fnirSoft program. Type in the following at command prompt and hit enter. The code will

be repeated at the command output pane and output will be displayed below it as shown below.

2.2. Mathematical Expressions
Binary arithmetic operators + (addition), - (subtraction), * (multiplication), / (division); and unary

operators ^ (power), ‘ (transpose) are available.

WriteLine("Hello world!");

12 + 5

12 - 5

Sin(pi / 2)

Atan(Tan(pi / 2)) / pi

0.5 * Log(Exp(10)) + (16.2 * 5 - 1)

TIP

Type “2 +3” (without quotes) at the

command prompt and press enter. You

should see the result 5 at the output pane.

TIP

If you add ‘;’ (semicolon) after the command entry, no output will be displayed at the output pane!

fS 2018

8 | P a g e
H. Ayaz (v4.10)

2.3. Creating and Using Variables

2.3.1. Creating a Single Value – Numeric Variable

To create a new variable, just type a valid name (that starts with a letter and not a reserved word) and

use ‘=’ (equals sign) to assign value to the variable.

With this single assignment, a new variable called ‘myvar’ is created. A number is assigned as value and

the size of the variable is 1x1 (single scalar). All available variables can be seen at the ‘Dataspace’

window and can also be listed by typing ‘Variables’ or ‘Dataspace.Variables’ at the command prompt

and hitting enter or, by using the toolbar button at the main window (See figure in page 3).

Note that there’s another variable called ‘ans’ which is short for answer and always contains the results

from last operation.

A variable can be single scalar value, a vector or an array. After creating the variable, the name can be

used in subsequent commands.

2.3.2. Creating a Vector – Numeric Variable

To create a vector, type values separated by space between squared parenthesis: ‘[‘ and ‘]’ as shown

below.

After the two commands are executed, the new variables are also available in the list.

myvar = 5

myvar + 2

myvector = [1 2 3 4];

nextvector = myvector * 2

fS 2018

9 | P a g e
H. Ayaz (v4.10)

2.3.3. Creating an Array – Numeric Variable

The process is similar to creating a vector as described above. Use ‘,’ (comma) to indicate end of

row/new row. To create an array/matrix, type values separated by space between squared parenthesis:

‘[‘ and ‘]’ as shown below, and use ‘,’ (comma) to separate rows.

TIP

Use ‘Variables’ command to list all variables in Dataspace (with name and sizes) within the

command pane.

myvar = [5 6, 7 8];

nextvar = myvar * 10

TIP

Use ‘Delete all’ command to delete all variables and objects in Dataspace.

fS 2018

10 | P a g e
H. Ayaz (v4.10)

2.3.4. Creating a String Variable

A string is defined as text with in double quote (“) characters. To create a new string variable, similar to

numeric assignments, just type a valid name (that starts with a letter and not a reserved word) and use

‘=’ (equals sign) to assign string value to the variable.

The string variable can be accessed by name. Also, “+” and “-“ operators can be used to concatenate

multiple string and to remove string from one another.

2.3.5. Creating a List Variable

List variable is a collection of multiple variables that are either numeric or string. List variables help

organizing related variable by placing together and can still access each member item (variable)

separately. In the following example, three previously defined variables are input to “ToList” command

to create a new list variable.

mystring = "This is a string!"

mylist = ToList(myvar myvector mystring)

TIP

Sample script file “script2.3.fss” contains all expressions used here with comments, you can

open this file and execute from the fnirSoft Editor.

fS 2018

11 | P a g e
H. Ayaz (v4.10)

2.4. Intellisense
When typing variable names or command names, intellisense pop-up dialog displays suggestions and

auto-complete options to help typing your scripts. After you type a few letters, intellisense will pop-up

automatically with a list that displays commands and variables that include that partial text. The list is

updated as you continue typing. You can hit enter to select one (highlighted option will be inserted), or

click on any option with mouse cursor or hit ‘Escape’ button (on the keyboard) to cancel and close

intellisense. If intellisense is not open or closed, use ctrl+space button combination to re-launch it.

For example, type ‘std’ in the command prompt. These three characters will list the following popup-

window with the matching command names (variables created in previous examples) will be shown as

candidates.

Also, the ‘.’ (dot) character is a trigger for intellisense. When you type collection and category names

followed by ‘.’ (dot) all subitems are listed. The default collection for fnirSoft commands is “fs” and

“Utility” is one of the categories. When you type “Utility” followed by ‘.’ All commands in that category

is listed. You can see additional information for each command if you click on one of them (as tooltip) or

hover the mouse cursor over one of the written commands in the command prompt.

std

TIP

Use ‘up/down’ cursor keys (on the keyboard) to navigate between command

history. You can immediately recall the previous executed entries by using up

and down keyboard buttons.

fS 2018

12 | P a g e
H. Ayaz (v4.10)

2.5. Command Popup Help Documentation
When you type a valid command name followed by ‘(‘, open parenthesis character, a popup window

with description of that command is displayed. You can mouse cursor to scroll up/down, or click “Open

Command Help Explorer” button to read more. Otherwise, just continue typing and the popup window

will disappear automatically.

2.6. Help Explorer
Command help explorer provides displays help documentation for all fnirSoft Script commands. To

launch use “HelpExplorer” command, or the link in popup help window (See above) or at the main

window, top menu, Help>fnirSoft Command Explorer menu item.

The left pane at Help Explorer lists all available items in the first tab hierarchically and in the second tab,

allows search within all documentation.

2.7. Editor Tool
Editor Tool is for composing fS Scripts with all syntax highlighting and intellisense available same as on

the command prompt. Editor Tool allows loading/saving/executing fS Programs. Editors can be opened

by clicking the ‘Editor’ button at the toolbar of main window or just typing ‘editor’ at the command

prompt. Below is an empty editor window.

fS 2018

13 | P a g e
H. Ayaz (v4.10)

fS 2018

14 | P a g e
H. Ayaz (v4.10)

Create a new file

Save current file

Open a fS script file (*.fss)

Save current contents as a new file

Cut selected text to clipboard

Copy selected text to clipboard

ory

Past clipboard contents

Turn selected text block

into comment (marked

for no-execution)

Turn selected text block

into script for execution

(marked for execution)

Auto arrange

indentation

based on script

structure (loops,

if/else, script

blocks, etc.)

 (

Increase

indentation

(Move selected

text block to the

right)

Decrease

indentation

(Move selected

text block to the

left)

Execute (continuously)

the script in the

currently open tab

Execute (continuously,

in Debug mode) the

script in the currently

open tab

Execute (single

statement and

pause) the script

in the currently

open tab

Pause (at anytime during

execution)

Stop (at anytime during

execution)

fS 2018

15 | P a g e
H. Ayaz (v4.10)

2.7.1. Coding Pane

There are three tab for the coding page: files (lists all script and text files in the current directory,

commands (lists all fs category and commands) and templates (script statements for fast typing). Use

the coding pane to quickly perform tasks, for example, clicking on a file will open it in a new tab, clicking

on a command, will enter the full command name into the text editing area, or clicking on a template,

will enter the respective script block into the text editing area.

Show/Hide Coding

pane (left hand side)

Show/Hide Debug pane

(bottom)

Show/Hide Output Window

(display all warning and

errors during and all the

executions.

fS 2018

16 | P a g e
H. Ayaz (v4.10)

2.7.2. Debug Pane

The Debug pane is at the bottom of the editor window and contains three tabs: Check List (lists errors

and warning while you are typing the script), Breakpoints (lists breakpoints marked by clicking the

beginning of the row, row number area, that execution will pause during debug mode), Locals (lists

local/temporary variables that do not appear in dataspacse for debuging)

The check list pane lists any run-time syntax error that are detected as you type. To test is type “a=”

since no assigment value is detected an error will immediately appears in the check list pane. When you

complete it by adding a number ‘a=5’ the error will dissappear. See the following figures.

fS 2018

17 | P a g e
H. Ayaz (v4.10)

TIP

Use Templates by typing template identifiers and pressing <tab> key to expand:

When <tab> button on the keyboard is pressed the following is automatically inserted:

See template tab (at the coding pane) to see list of template identifiers (which are listed in

parenthesis next to the template item.

fS 2018

18 | P a g e
H. Ayaz (v4.10)

2.8. Output Window
Output window provides a single location to see warnings and errors generated throughout the

execution of scripts. It can be access from main window, under View top menu item.

When the output window is launched it will display list of errors from last execution. Also, all errors can

be selected from the “select source” combo box. Also number of errors and warnings are provided at

the toolbar.

2.9. Execution Control

2.9.1. Loops

Iterations and repetitions are critical in performing same task on large amount of data. To create a loop,

use “loop” keyword followed by an iterator name (i.e. any valid variable name that starts with $ sign) and

use, “from” and “to” keywords to indicate start and end counts for the helper variable to go through.

After typing the code, hit ‘Run’ button (at the editor toolbar) to execute the script. Output will be shown

at the command output pane of the main window.

fS 2018

19 | P a g e
H. Ayaz (v4.10)

2.9.2. Nested loops

Loops within loops can be used, below is an example code that has nested-loops and the output

indicates the order of execution.

// count from 1 to 5

loop $i from 1 to 5

{

 WriteLine "$i"

}

// count from 1 to 5

// with increments of 2

loop $i from 1 to 5 step 2

{

 WriteLine "$i"

}

// count from 1 to 5

// with increments of 2

// with exceptions

loop $i from 1 to 5 step 2 except 3

{

 WriteLine "$i"

}

// count free-form, identify each

loop $i 5 2 3 1

{

 WriteLine "$i"

}

// nested loops

loop $i from 1 to 3

{

 loop $j from 10 to 7

 {

 WriteLine("$i $j");

 }

}

fS 2018

20 | P a g e
H. Ayaz (v4.10)

2.9.3. Conditionals

If-else statements can be used to create operation branches. The syntax is as follows.

If logical-statement

 Operation1

else

 Operation2

The logical statement is composed of two values/variables separated by a comparison operator (‘<’, ‘>’

or ‘=’). Else statement is optional. Both operation1 and operation2 should be single operations that is

on single line without any ‘;’.

2.9.4. Warning and Error Handling

2.9.4.1. Errors

Any identified error during execution is reported on command output pane and stops execution by

default. To see an example, consider the following example, in which, on line 10 in the code, a variable

name (a) is entered without any assignment value. When the code is executed, an error message is

displayed on command output pane with the type and location of error and the execution is stopped.

And, here’s the command pane output, listing the error. The message includes the identified message

and the script file. Note also that error location (line number and column number) is listed at the end.

testvar = 1

if testvar > 0

 WriteLine ("SUCCESS!")

else

 WriteLine ("FAILED!")

fS 2018

21 | P a g e
H. Ayaz (v4.10)

To change behavior after an error, use ‘#error’ directive and one of the following: action.pause,

action.ignore or action.end

This time, execution continues after the error. However, error is still reported each time. See below:

Also, specific error and warning numbers can be incorporated, for example, for the above example, the

following could be used to change the action for just this specific error by providing error number. Note

fS 2018

22 | P a g e
H. Ayaz (v4.10)

that error numbers are provided at the end of the error message as (Code Exxxx) where xxxx is the

number: #error action.ignore 1059

2.9.4.2. Warnings

Similarly, warnings generated during an execution will not stop the execution and only reported in the

console and output pane. Hence, the default action for warning is ‘action.ignore’. To change behavior

after an error, use ‘#warning’ directive and one of the following: action.pause, action.ignore or

action.end

 #warning action.ignore(default), #warning action.pause, #warning action.end

#error action.ignore, #error action.pause, #error action.end (default)

Description of the action keywords:

action.ignore Ignores warning/error and continues the execution. This is the default action
for warnings.

action.pause Pauses the execution at the line where warning/error is given. See Debug
section for more information

action.end Ends the execution at the line where warning/error is generated. This is the
default action for errors.

It is important to note that warning and error directives take into effect from and on the line they are, so

multiple directives can be used at different parts of a script to have different effects at these different

parts. Also, just warning numbers can be used to change default action for one or more warning types.

Note that, in editor, line numbers are also provided on the left of each line. Line numbers can also be

enabled on main window command entry. To do that, right click and from drop down menu, select show

line numbers.

 →

TIP

Use ‘Delete all’ or ‘Dataspace.Clear’ command to delete all variables in memory.

Or use “Delete <variable name>” to delete specific variables.

fS 2018

23 | P a g e
H. Ayaz (v4.10)

2.9.5. Debugging

When working with long script files, a way to identify problematic code sections can be challenging. Use,

step to pause execution after execution of each step. When execution is paused, editor displays current

execution line and all memory (variables in Dataspace) is available to investigate.

Also, break points in a script can be placed, where execution pauses if ‘Debug’ is used. Below in the

example, line 6 is marked with a break point (a red circle before the line number). Clicking on this circle

again clears the break point.

If the script is executed as is (with the break-point enabled) by clicking ‘Run’, execution continues until

line 6 and pauses there as shown below. Stop, Step and Continue buttons are now enabled.

Hit ‘Continue’ to resume execution, or hit ‘Stop’ to end execution.

Use this to start

execution with debug

fS 2018

24 | P a g e
H. Ayaz (v4.10)

Execution can also be stopped from main window, lower left corner status button with text ‘Stop’.

2.9.6. Try/Catch/Finally

Try/Catch statements can be used to perform warning and error handling at run-time and control

execution with additional branches.

The following describes the usage:

Try

{

 //Some script that might generate warning and error. Try statement is a mandatory section.

}

Catch

{

 //Script to run if and when error happens. Catch statement is mandatory if finally is not used.

}

Finally

{

 //Additional script to run always at the end of a try/catch statement. Finally section is optional.

}

Use catch #error to just catch error events, and catch #warning to just catch warning events.

Also, specific error and warning numbers can be used to catch only specific warning or error events, for

example catch #error 1085

See Sample scripts 2.9.6.1 through 2.9.6.6 for various examples and use cases.

2.9.7. Current directory

Current directory is a setting that can be changed. When using commands to do file operations (read/write

files) if only file names are provided, they are expected to be in the current directory.

To check current directory, use ‘CurrentDirectory’ command.

 CurrentDirectory

fS 2018

25 | P a g e
H. Ayaz (v4.10)

Alternatively, current directory can be checked and changed by clicking “View > Settings” from the top

menu of the main window, and at the ‘Directories’ section.

Current directory can be edited or the “…” button can be used to select a folder. When a folder is saved,

the setting will persist beyond a restart.

Also, current directory can be changed in scripting by using the ‘ChangeDirectory’ command.

ChangeDirectory "C:\Users\Hasan\Documents\COBI Studio Data"

fS 2018

26 | P a g e
H. Ayaz (v4.10)

2.10. Functions
Functions or subroutines can be created to keep commonly used code pieces re-used and called from

multiples places without re-writing all code block.

fnirSoft will search current directory and all paths and look into fss (script) files and check if any contain

function definition. If any function definition is found, it will be available for use anywhere (from main

window or from other fss files).

To define a new function use the function keyword followed by a valid name and then use curly

parenthesis to indicate function body. The following sample function returns two times of any input

variable.

 Next, this function can be used anywhere within the same script.

Also, if you save this fss file in current directory or any path folder, this function can be used from

TIP

If global keyword is used before function keyword in the definition, that function can be called

from other files and main window. To see all available global functions, type fs.Functions

followed with a dot (‘.’) that opens the intellisense popup window.

function myfunction291

{

 return Multiply(2 GetAllParameters)

}

function myfunction291

{

 return Multiply(2 GetAllParameters)

}

//function call

myfunction291(3 4) //when you run this file, returns 6 and 8

fS 2018

27 | P a g e
H. Ayaz (v4.10)

3. Common programming/use patterns
In this chapter, sample usage patterns are listed with codes.

3.1. Loading Light Intensity data (*.nir) files
This section describes loading COBI Studio light intensity data (*.nir) file to Dataspace as variables. All

associated marker files are also loaded automatically, see the single line below that searches for an nir

file that starts with “HA_25”. See sample script file “script.3.1.fss” for more information.

After the operation, the following varibles are created for each loaded file. Main data is in “#.DataBlock”

variable. All marker data is loaded in “#.DataMarker” variable. Baseline information is loaded to

“#BaseBlock” variable. And, time variables for Data and Baseline are also created seperately.

3.2. Loading Oxygenation/Hemoglobin concentration changes data (*.oxy)

files
This section describes loading COBI Studio oxygenation/hemoglobin concentration changes data (*.oxy)

file to Dataspace as variables. All associated marker files are also loaded automatically, see the single

line below that searches for an oxy file that starts with “HA_25”. See sample script file “script.3.2.fss” for

more information.

After the operation, the following varibles are created for each loaded file. Main data for all four

biomarks are created in separate variables “#.Hbo.DataBlock” for oxygenated-Hemoglobin,

“#.Hbr.DataBlock” for deoxyganed-Hemogblobin, “#.Hbt.DataBlock” for total-hemoglobin concentartion

and “#.oxy.DataBlock” for difference in Hemoglobin, oxygenation. All marker data is loaded in

“#.DataMarker” variable and time variable is loaded in Datatime variable.

myData# = Load("Sample Data\HA_25.*.nir");

myData# = Load("Sample Data\HA_25.*.oxy");

fS 2018

28 | P a g e
H. Ayaz (v4.10)

3.3. Loading Marker/Event data (*.mrk) files
Marker files can also be loaded programmatically to Dataspace separately, however, it is strongly

suggested that either nir or oxy data file is used to load the markers indirectly since, the start time

stamp is needed to align event markers, specifically manual marker data files. See sample script file

‘script.3.3.fss

3.4. Loading fnirSoft data (*.fsd) files
Fsd data files contain all types of variables and load command can be used to load them back to

Dataspace. Note that there’s no assignment after this as fsd variables are all loaded to Dataspace

directly. The following example searches and load fsd files whose name ends with ‘refined’. See sample

script file ‘script.3.4.fss”.

Load("Sample Data\.*refined.fsd");

myData# = Load("Sample Data\HA_25.*.mrk");

fS 2018

29 | P a g e
H. Ayaz (v4.10)

3.5. Loading multiple files simultaneously
Multiple files can be loaded at once by expanding the search pattern (regular expression) given as input

to the load command. In the example below, any nir file that starts with “HA” is searched in the ‘Sample

Data’ folder (within the current directory) and two files matched. Compare the number of name of

created variables with those in section 3.1. See sample script file ‘script.3.5.fss’ for more information.

myData# = Load("Sample Data\HA.*.nir");

fS 2018

30 | P a g e
H. Ayaz (v4.10)

3.6. Calculating Oxygenation from Light Intensity data
To apply modified beer lambert law, use mbll command. See the command documentation by typing

“help mbll” or in command explorer window under help. Below example uses a Block in Dataspace and a

given baseline to calculate all four biomarkers. The baseline keyword identifies the following variable to

be the baseline. But both are optional and if not used, automated baseline from the DataBlock

(beginning) part is extracted and used. See sample script file ‘script.3.6.fss”.

or (Same as)

3.7. Using Find command
The Find command can get one more of variables by name, label or type. Find command can apply search

through variables in Dataspace and use string matching for name, label and/or type information to select

the variables. Regular expressions (RegEx) can be used for string search. An optional parameter

‘echo.commandmessages.simple’can be added to print out a summary at command messages on the

console.

The following examples use the sample data_3.2.2_refined.fsd loaded as described in section 3.4.

processed# = Mbll(Find("DataBlock") baseline Find("BaseBlock"));

processed# = Mbll(myData1.DataBlock baseline myData1.BaseBlock);

fS 2018

31 | P a g e
H. Ayaz (v4.10)

More information about regular expression syntax can be found elsewhere1. In addition to name, label

and type information can be searched. Use name, label or type keywords. The following string input

after the keywords are the search patterns to be used for that.

1 http://en.wikipedia.org/wiki/Regular_expression

Find("hbo"

echo.commandmessages.simple);

Find("hbo.B"

echo.commandmessages.simple);

Find("Block1"

echo.commandmessages.simple

);

TIP

Use ‘View’ command along with find command to display all variables together.

Executing View Find("hbo.Block") will display the following window:

fS 2018

32 | P a g e
H. Ayaz (v4.10)

3.8. Calculating Averages
A common operation is to calculate temporal and/or spatial mean values for a large number of blocks.

There are multiple ways to perform the same operation and their advantages vary depending on the

condition. This section demonstrates calculating the mean value across time and optodes, for

oxy1.fhbo.Block0 and oxy1.fbho.Block1.

The following two methods perform the same overall operation in two different ways. The first methods

simply uses find function to get all variables and perform the calculation in one line. The second method

uses iterative approach to get each variable one by one. See sample script file ‘script.3.8.fss”.

Method 1

Method 2

Note that, in the loop, we have used ‘@’ prefix in-front of temp variable, which relieved us from

initializing the variable before iteration. It merely, disregards the variable if it is the first iteration.

res1 = Spatial.MeanAcross(Temporal.MeanAcross(Find("hbo.Block"

echo.commandmessages.simple)))

loop $i from 1 to 2

{

 temp = Append(@temp Temporal.MeanWithin(oxygraph1.ref.hbo.Block$i));

}

res2 = Spatial.MeanWithin(Temporal.MeanWithin(temp))

TIP

All commands that end with “within” means the operation is performed for each input

variable. So it creates the same number of output variables as the number of input variables.

All commands that end with “across” means the operation is performed using all input

variables at once and creates only one output variables with any number of input variables

(with a few exceptions).

fS 2018

33 | P a g e
H. Ayaz (v4.10)

Otherwise, we would need to create vector of the same size (columns) and append all other variables

and trim the first row (initial all zero). The ‘@’ prefix saved us from additional work.

3.9. Saving variables to fnirSoft data (*.fsd) files
fnirSoft saves all variables (numeric, string and list) to a fsd data file. These files can be loaded to

memory using “load” command followed by filename (relative or absolute directory address) as

parameter, as shown in section 3.4. This section discusses creating fsd files by saving variables.

All current variables in Dataspace can be saved to a file by using save command. The first parameter is

the new file name. The s will create a new file “data1.fsd” in current directory. If a file already exists, it is

overwritten.

or

In addition, you can only save a subset of variables instead of variables all current variables. To do that,

add the names of the variables to save after the file name.

or

After executing the “save” command, a brief report (file name and number of variables saved) will

appear on the command output pane.

The output filename can contain placeholders for automatic naming. Placeholders are keywords within

curly parenthesis such as {name}. During execution the following replacements will be done if any

placeholders are present based on first input variable:

Save "data1"

Save("data1.fsd")

Save "data1.fsd" oxy1.hbo.Block1 oxy1.hbo.Block2

Save("data1.fsd" Find("hbo.Block"))

fS 2018

34 | P a g e
H. Ayaz (v4.10)

{name} to be replaced 'input variable name'

{index} to be replaced with order/index number of the input variable within the set of all inputs

{count} to be replaced with the number of all input variables

{type} to be replaced with the variable type such as Numeric, String or List

{size} to be replaced with variable size such as row x col that is height x width for numeric (array)

{label} to be replaced with available labels of each input variable

{width} to be replaced with number of columns in the input variables

{height} to be replaced with the number of rows in the input variables

{date} to be replaced with current date/time during export

{time}, {year}, {month}, {day}, {hour}, {minute}, {second} similar to date but only respective parts.

The same placeholders are used for Export functions. If more than one variable is used, the first

variable’s properties are used for replacing placeholders as shown below.

3.10. Applying FIR Filter
Use Filter command to apply FIR filter to select variables. The syntax is as follows

Filter(<variable name(s)>)

Filter(<variable name(s)> settings <filter name to use>)

To see the available filter names or design new filters type FilterList. Also, use

FilterDesignDialog can be used to view, edit and create all available filters as shown below.

Save("data_{date}.fsd" Find("hbo.Block"))

fS 2018

35 | P a g e
H. Ayaz (v4.10)

Here’s the code for applying the default filter (which is a low-pass FIR filter) to the 2 variables:

Same operation can be performed by specifying the filter to use, the following code performs the same

operation as the one above.

A new variable is created named “filtered”. Below is graphing just optode14 for the original

(processed1.hbo) and its filtered version “filtered” variables. See sample script file ‘script.3.10.fss’

filtered = Filter(Find("processed.*hbo.B" echo.commandmessages.simple));

TIP

Use ‘#’ operator to define indexing within names. If it is not used, by

default indexing numbers are added such as <name>_1, <name>_2.

However, you can define where the numbers should be added by placing ‘#’

within the name.

filtered=Filter(Find("processed.*hbo.B" echo.commandmessages.simple)

settings "System1200S_2Hz");

fS 2018

36 | P a g e
H. Ayaz (v4.10)

3.11. Defining Block Times
Use DefineBlockTimes command to identify time(s) for a given start and end pattern.

Usage is as follows:

outputvar = DefineBlockTimes (blockDefinitionVariable inputvar1 [inputvar2])

Block definition variable is a set of pattern that describes start and end times. Use

BlockDefinitionDesign to create the block definition variable.

Use is as follows:

outputvar = BlockDefinitionDesign(keyword1 input1 keyword2 input2 [keyword3 input3] ...)

Each keyword is a specific definition followed by parameters. Below are most used keywords

starttype.markers

endtype.markers
(for using marker values for start or end), a variable with one or more
marker values follows the keyword.

starttype.fixedtime

endtype.fixedtime
(for absolute time of start or end), a variable with the absolute time
value in seconds and optionally period value follows the keyword.

starttype.relativetime

endtype.relativetime
(for using relative time, requires the other end of block to be a fixed
time or marker based): relative time value as second item.

label (for assigning label to output block): a string variable that contains
selected label follows the keyword

withintimerange (to use only specified time range of the input variable instead of using
entire variable): A variable with start and end times of the time range
follows.

An example is to use marker value '45' as start and marker value ‘50’ to end, both definitions are as

follows:

definition1=BlockDefinitionDesign(starttype.markers 45 endtype.markers 50);

Here starttype and endtype are both markers and marker values follow each relevant keyword. You can

check the contents of the block definition variable by typing its name at the command prompt and

contents will be printed as below:

fS 2018

37 | P a g e
H. Ayaz (v4.10)

And, here’s another example in which 3 successive markers indicate start the pattern. There shouldn’t

be any other markers in between the given successive markers.

For start, use marker values 40 45 and 90 one after another' as a single pattern for start and for end

marker value ‘50’.

definition2=BlockDefinitionDesign(starttype.markers [40 45 90]

endtype.markers [50]);

Note that if needed border inclusion can be enabled by using start.includeborder keyword. With

this, start time results would be the beginning of the multi-marker pattern instead of the default inner

border side. For single marker patterns this is the same. Similarly, if border inclusion is enabled for end

pattern (by end.includeborder), then end time would be the outer border/end of multi-marker

pattern. For single markers this is the same.

Another example is to use marker for start and use relative end time based on start of a block. In the

following, use marker value '92' as start and end time relative to start with 40 seconds, both definitions

are as follows:

definition3 = BlockDefinitionDesign(starttype.markers 92

endtype.relativetime 40);

Here are executions for all pairs using the sample raw data HA_25_1_07301658.nir loaded as in section

3.1. Note that the results are identical for Pair 1 and 2, just there are more command print out.

Add echo.commandmessages.simple keyword to receive a report about found patterns on the

console.

See sample script file ‘script.3.11.fss’ for all examples described in this section.

Below are use of the block definition variables.

Pair 1

The times variable is of type blocktime, each row is another block definition and first column is start

time, second column is end time. Optional last column indicates when this definition is used for

extraction of data, time information along with the respective data information is also extracted.

times1=DefineBlockTimes(definition1 myData1.DataBlock)

fS 2018

38 | P a g e
H. Ayaz (v4.10)

Pair 2

Pair 3

3.12. Standardizing
Z-scores are one method of normalization.

The standard z-score is defined as follows:

𝑧 =
𝑥−𝜇

𝜎

where x is a raw value to be standardized, µ is the mean of the dataset where x came from, and σ is the

standard deviation of the same dataset.

Use Temporal.ZScoresAcross command to calculate z-scores across input variables. In the

following sample, two variables (g1.oxy.Block0 and g1.oxy.Block1) are used as input

times2=DefineBlockTimes(definition2 myData1.DataBlock

echo.commandmessages.simple)

times3=DefineBlockTimes(definition3 myData1.DataBlock)

res = TemporalZScoresAcross(Find("hbo.B" echo.commandmessages.simple));

fS 2018

39 | P a g e
H. Ayaz (v4.10)

3.13. Splitting Variables
Use Temporal.Split command to create smaller output variables from input variables. Splitting can

be done either by specifying the number of output variables (each with equal size that depends on the

size of the input variables) or by specifying the size of the output variables and the number of outputs

depend on the size of the input variables.

Usage is as follows:

outputs = Split(splitDefinition inputVar1 [inputVar2] {inputVar3] …);

 splitdefinition is a vector:

 For Fixed Number of Output Blocks: [(Using-Row-Number) (Using-Column-Number)]

 For Fixed Length of Output Blocks: [0 0 (Using-Row-Number) (Using-Column-Number)]

The following example creates 10 blocks out of g1.raw.Block0. Input block has 55 rows so each output

block has the rounded factor that is 5 rows. Hence, the last rows has been eliminated for the split. To

change that, you can use Temporal.TrimFirst or Temporal.TrimLast commands to eliminate as

much rows as required.

res = Split([10] myData1.DataBlock);

fS 2018

40 | P a g e
H. Ayaz (v4.10)

3.14. Exporting variables to Matlab
Use Export2m command to save select variables to a single matlab file. If the selected filename

doesn’t have an extension of “.m”, it will be appended.

 Export2m(“<filename>.m” <variable1> <variable2> …)

The output filename can contain placeholders for automatic naming. Placeholders are keywords within

curly parenthesis such as {name}. During execution the following replacements will be done if any

placeholders are present based on first input variable:

{name} to be replaced 'input variable name'

{index} to be replaced with order/index number of the input variable within the set of all inputs

{count} to be replaced with the number of all input variables

{type} to be replaced with the variable type such as Numeric, String or List

{size} to be replaced with variable size such as row x col that is height x width for numeric (array)

{label} to be replaced with available labels of each input variable

{width} to be replaced with number of columns in the input variables

{height} to be replaced with the number of rows in the input variables

{date} to be replaced with current date/time during export

{time}, {year}, {month}, {day}, {hour}, {minute}, {second} similar to date but only respective parts.

For example, the following will include type and date info in the output filename.

Note that, if there are more than one variable, the first variables’ properties will be used to replace

placeholders.

3.15. Exporting variables to Text Files
Use Export2txt command to save select variables to a single tab separated file that can be opened by

many data processing applications. If the selected filename doesn’t have an extension of “.txt”, it will be

appended.

Export2m("data_{type}_{year}_{month}_{day}.m" oxy1.fhbo.Block1)

Export2m("data.m" oxygraph1.ref.hbo.Block1 oxygraph1.ref.hbo.Block2)

fS 2018

41 | P a g e
H. Ayaz (v4.10)

Similar to Export2m and save commands, the output filename can contain placeholders for automatic

naming. Placeholders are keywords within curly parenthesis such as {name}. During execution the

following replacements will be done if any placeholders are present based on first input variable:

{name} to be replaced 'input variable name'

{index} to be replaced with order/index number of the input variable within the set of all inputs

{count} to be replaced with the number of all input variables

{type} to be replaced with the variable type such as Numeric, String or List

{size} to be replaced with variable size such as row x col that is height x width for numeric (array)

{label} to be replaced with available labels of each input variable

{width} to be replaced with number of columns in the input variables

{height} to be replaced with the number of rows in the input variables

{date} to be replaced with current date/time during export

{time}, {year}, {month}, {day}, {hour}, {minute}, {second} similar to date but only respective parts.

Export2txt("data.txt" oxy1.fhbo.Block1 oxy1.fhbo.Block2)

Export2txt("data_{size}.txt" oxy1.fhbo.Block1)

fS 2018

42 | P a g e
H. Ayaz (v4.10)

4. Naming Conventions

4.1 Categories
The categories of in fS command collection indicates processing features of the commands. ‘Temporal’,

‘Spatial’ or ‘Math’ (Cell by Cell), specify the direction of the operation. For example,

Temporal.MeanWithin command, calculates means of all columns (of input variable) and the output

variable has the same number of columns with the input variable. Similarly, Spatial.MeanWithin variable

calculates means of all rows (of input variable) and the output variable has the same number of rows

with the input variable. ‘Cell by Cell’ specifies use of each cell separately across multiple input variables.

Below is an illustration of the direction of commands.

If the command name ends with either ‘within’, this indicates operation is performed on each input

variable separately and if command name ends with ‘across’, this indicates operation is performed on all

fS 2018

43 | P a g e
H. Ayaz (v4.10)

input variables together. For example, Temporal.MeanWithin calculates means on each input variable

separately, and Temporal.MeanAcross calculates one global mean from all input variables.

4.2 Variable Associations
Variables in fS Dataspace can be associated or linked using variable names. Associated variables contain

complementary information such as time and data variables. Linking variable names is achieved using

specific strings within the names and keeping all else the same. For data variables ‘Block’ is the substring

that variable name should contain. And for time variables, ‘Time’ is the substring that variable name

should have. So, as an example, “a.Block” and “a.Time” would be linked. Other linked variables are

marker variables and

 Relation Type Variable name should contain Variable type should be Variable content should be

Data Block Numeric Light or Hemoglobin

Marker Marker Numeric Marker

Time Time Numeric Time

Info Info List Composite

Various commands can be used to get the associated variable name or the associated variable itself,

such as GetDataVariable, GetDataVariableName, GetTimeVariable, GetTimeVariable,

GetMarkerVariableName, GetMarkerVariableName, GetInfoVariable,

GetInfoVariableName.

Additional information about how these functions operate is below:

• First, identifies what kind of variable is input variable from name, type and content;

o example: GetMarkerVariable(a.Block) -> a.Block is a Data variable

• Replaces the relation name part with the desired relation name part;

o example: GetMarkerVariable(a.Block) -> name to search is 'a.Marker'

• If the input relation type and searched relation type are same and that is not "Data", it returns the input

variable;

o example: GetMarkerVariable(a.Marker) -> a.Marker EXIT

• If not found, searches for exatch match and returns it if found.

o example: GetMarkerVariable(a.Block) -> a.Marker EXIT

• If not found, checks if the searched name contains a bio part (hbo,hbr,hbt,oxy); example : a.hbo.Block

o If the input relation type and searched relation type both "Data", it searches for other bio parts;

fS 2018

44 | P a g e
H. Ayaz (v4.10)

• example: GetDataVariable(a.hbo.Block) -> a.hbo.Block, a.hbr.Block,a.hbtBlock,

a.oxy.Block EXIT

o Otherwise searches for the variable with name searched minus bio part and returns if found it;

• example: GetMarkerVariable(a.hbo.Block) -> a.Marker EXIT

• If not found, searches for variables whose names contain a bio part in searched name;

o example: GetMarkerVariable(a.Block) -> a.hbo.Marker EXIT

o example: GetDataVariable(a.Marker) -> a.hbo.Block, a.hbr.Block,a.hbtBlock, a.oxy.Block EXIT

fS 2018

45 | P a g e
H. Ayaz (v4.10)

5. Indexing
fnirSoft Script allows multiple data types variables (as matrices) and lists (sets of variables and other

types). Hence, there are different types of indexing is necessary to access different elements.

5.1. Get Numeric Variable Indexing
First, let’s create an array to access its cell values.

Use squared parenthesis after variable name to access cells. Usage is as follows:

variable_name[row(s) , column(s)]

a = [10 20 30, 40 50 60, 70 80 90]

// get single cell

a[2,3] // second row, third column

// get row(s)

a[1] // first row

a[1 3] // first and third rows

// get column(s)

a[,1] // first column

a[,2 3] // second and third columns

// get mixed

a[1,2 3] //first row, second and third columns

a[1 3, 2]// first and third rows, second column

// none existing rows/columns returns NaN

a[4, 5]

a[3 4, 3 4]

fS 2018

46 | P a g e
H. Ayaz (v4.10)

5.2. Set Numeric Variable Indexing
Using the same indexing as described in previous section, numeric variable cell values can be re-

assigned. Usage is as follows:

variable_name[row(s) , column(s)] = new_value

// invalid indices (error)

a[0]

a[-1]

a["b"]

// set single cell

a[2,3] = 0;

a

// reset a and set row

a[1] = 0;

// first row -> 0 NaN NaN

a[2] = [from 3 to 9 step 3, 5];

// second row -> 3 6 9

a[3] = [5, 6, 7];

// third row -> 5 NaN NaN

a

// reset a and set column

a[,1] = 0;

// first column -> 0, NaN, NaN

a[,2] = [1 2, 3 4];

// second column -> 1, 3, NaN

a[,3] = [5 6 7 8];

// third column -> 5, NaN, NaN

a

fS 2018

47 | P a g e
H. Ayaz (v4.10)

5.3. List Variable Indexing
First, let’s create a list variable to access its items

Use round parenthesis after variable name to access items. Usage is as follows:

list_name(index_number) where index_number is a positive integer

list_name(“index_name”) where index_name is a string

// reset a and set mixed

a[1 4 2, 3 4] = [100 200, 300, 400 500];

// non existing indices expand the

// numeric variable

a

a = ToList (5 "test" [2 3, 4 5]);

Rename a(3) "third";

a

// get var with list indices

a(1)

a("third")

a(2 "third")

a(from 1 to 3)

fS 2018

48 | P a g e
H. Ayaz (v4.10)

// set var with list indices

a(1) = 6

a("third") = 2 * a("third")

a(2 "third") = 5 "test2"

a(5) = 99 // expands the list to 5

//variables and fills the missing

//indices with NaN

a(from 1 to 5) = (from 2 to 10 step 2)

// non existing indices warning

a(20)

a("none")

// invalid indices (error)

a(-1)

a(0)

a("")

fS 2018

49 | P a g e
H. Ayaz (v4.10)

6. List of Commands
Here’s list of current variables classified by the type. To get more information about these command,

type their name in the command prompt and hit enter. Description and usage will appear in the

command output pane. Or, use Command HelpExplorer that is accessible from main window, top menu,

under help>command help explorer.

 fs

 Console
 Clear

 Echo

 ReadNumeric

 ReadNumericMultiple

 ReadString

 Write

 WriteLine

 DAQ
 BaseStation

 Remote

 Dataspace
 AddLabel

 Clear

 CopyInfo

 CopyLabels

 Delete

 Export2acq

 Export2csv

 Export2img

 Export2m

 Export2txt

 GetDataVariable

 GetDataVariableName

 GetInfoVariable

 GetInfoVariableName

 GetLabels

 GetMarkerVariable

 GetMarkerVariableName

 GetTimeVariable

 GetTimeVariableName

 GetVariable

 Hide

 ImportData

 Lightgraphs

 List

 Load

 New

fS 2018

50 | P a g e
H. Ayaz (v4.10)

 Oxygraphs

 RemoveAllLabels

 RemoveLabel

 Rename

 RenameLabel

 Report

 Save

 SetNameTemplate

 Show

 Topographs

 VariableExists

 Variables

 DateTime
 CurrentDateTime

 CurrentDay

 CurrentDayOfYear

 CurrentHour

 CurrentMillisecond

 CurrentMinute

 CurrentMonth

 CurrentSecond

 CurrentTicks

 CurrentYear

 Execution
 Error

 LastResult

 Run

 RunDebug

 RunStep

 Warning

 Functions
 CurrentFunctionName

 GetAllParameters

 GetParameter

 ParameterCount

 Lightgraph
 Channel2Optode

 Load

 Optode2AmbientChannel

 Optode2Channel

 Optode2Channels

 Optode2WavelengthChannels

 Organizer

 Refine

 Save

 SaveImage

fS 2018

51 | P a g e
H. Ayaz (v4.10)

 SaveLayoutImage

 Show

 Math
 Abs

 Acos

 Add

 Asin

 Atan

 Base

 Ceiling

 ConfidenceIntervalAcross

 Cos

 Cosh

 CountAcross

 Divide

 Exp

 Floor

 Gamma

 IsFalse

 IsTrue

 Log

 Log10

 LogGamma

 MeanAcross

 Multiply

 Random

 RandomInteger

 Round

 Sin

 Sinh

 Sqrt

 StdAcross

 StdErrAcross

 Subtract

 Tan

 Truncate

 Oxygraph
 Load

 Refine

 Save

 SaveImage

 SaveLayoutImage

 Show

 Spatial
 Append

 Car

 FixMissingWithin

fS 2018

52 | P a g e
H. Ayaz (v4.10)

 IsSameSize

 MaxAcross

 MaxWithin

 MeanAcross

 MeanWithin

 MedianWithin

 MinAcross

 MinWithin

 Reject

 SampleStdWithin

 SizeAcross

 SizeWithin

 SlopeWithin

 SortWithin

 StdAcross

 StdWithin

 SumAcross

 SumWithin

 Trim

 TrimFirst

 TrimLast

 System
 ChangeDirectory

 CopyDirectory

 CopyFile

 CreateDirectory

 CurrentDirectory

 CurrentScriptFileDirectory

 DefaultCobiDirectory

 DefaultDaqDirectory

 DefaultDirectory

 DeleteDirectory

 DeleteFile

 DirectoryContents

 DirectoryNames

 FileExists

 FileNames

 LatestFile

 MoveDirectory

 MoveFile

 ReadFile

 RenameDirectory

 RenameFile

 Version

 WriteFile

 Temporal
 Append

 AppendIfLabelsMatch

fS 2018

53 | P a g e
H. Ayaz (v4.10)

 AppendMeans

 AppendMeansIfLabelsMatch

 Cbsi

 ConfidenceIntervalRangeWithin

 ConfidenceIntervalWithin

 CorrectBaseline

 CorrWithin

 CountWithin

 DecomposeWithin

 DetrendWithin

 DLLAcross

 DULAcross

 EffectSizeDAcross

 EffectSizeRAcross

 ExtractWithIndex

 ExtractWithTime

 Filter

 FilterCheck

 FilterDelete

 FilterDesign

 FilterDesignDialog

 FilterExists

 FilterGet

 FilterGetDefault

 FilterGetDefaultName

 FilterList

 FilterSave

 FilterUpdate

 FixMissingAcross

 FixMissingWithin

 InterceptWithin

 IsSameSize

 MaxAcross

 MaxWithin

 Mbll

 MeanAcross

 MeanWithin

 MedianFilter

 MedianWithin

 MinAcross

 MinWithin

 PeakIndexWithin

 Reject

 RejectStdAway

 RemoveAmbient

 RLLAcross

 RULAcross

 SampleDown

 SampleStdAcross

 SampleStdWithin

 SampleUp

fS 2018

54 | P a g e
H. Ayaz (v4.10)

 SizeAcross

 SizeWithin

 SkewnessWithin

 SlopeWithin

 Smar

 SortWithin

 Split

 StdAcross

 StdErrAcross

 StdErrWithin

 StdWithin

 SumAcross

 SumWithin

 Trim

 TrimFirst

 TrimLast

 TrimNanPivotWithin

 TrimNanWithin

 TTest

 TTestPaired

 ZScoresAcross

 ZScoresWithin

 Topograph
 Load

 Pause

 Play

 SaveBrainImage

 SaveBrainVideo

 SaveData

 SaveImage

 SaveVideo

 SetRange

 SetThreshold

 SetView

 Show

 ShowBrain

 ShowFrame

 Stop

 Utility
 About

 Edit

 Exit

 ExportDialog

 Help

 HelpExplorer

 HistoryDialog

 ImportDialog

 ReadTimer

fS 2018

55 | P a g e
H. Ayaz (v4.10)

 Reset

 StartTimer

 Wait

 Variable
 AppendColumns

 AppendRows

 Atomize

 BlockDefinitionCheck

 BlockDefinitionDesign

 BlockDefinitionPresetDelete

 BlockDefinitionPresetExists

 BlockDefinitionPresetGet

 BlockDefinitionPresetList

 BlockDefinitionPresetSave

 BlockDefinitionUpdate

 ColumnCount

 Count

 DefineBlockTimes

 Find

 FindCount

 GetBlockTimes

 GetColumns

 GetContent

 GetName

 GetRows

 GetSameSized

 GetViewLabels

 IsContent

 IsList

 IsNumeric

 IsSameSize

 IsString

 ListContains

 ListLength

 Match

 Refine

 RejectColumns

 RejectRows

 RowCount

 SetContent

 SetName

 Size

 SortWithin

 SplitRows

 StringContains

 StringEndsWith

 StringIndexOf

 StringJoin

 StringLastIndexOf

 StringLength

fS 2018

56 | P a g e
H. Ayaz (v4.10)

 StringReplace

 StringSplit

 StringStartsWith

 StringTrim

 Substring

 ToList

 ToNumeric

 ToString

 View

 ViewSave

